Colloid particle adhesion to cells in 3D perfusion constructs

N. Sarvašová*, M. Majerská, A. Karasová, J. Dvořák, V. Král, F. Štěpánek University of Chemistry and Technology, Prague, Technicka 5, 166 28 Prague 6, Czech Republic, Tel.: +420 220 443 048 *E-mail: Nina.Sarvasova@vscht.cz

INTRODUCTION

OBJECTIVES

Design of a method suitable for an adhesion study in artificial flow system simulating the real conditions of desired end use of created micro and nanoparticles.

AG-targeting NANOPARTICLE

IgG-M75 antibody

M-75 is a monoclonal antibody binding specifically to CA IX antigen overexpressed in many tumors (colorectal, lung, cervical, breast and carcinoma).

Silicon dioxide body

SiO₂ shell provides mechanical and structural support for nanoparticle. Moreover, the material allows for simple ammination of nanoparticles \rightarrow such modified nanoparticles are then able to covalently bind to IgG-M75 using precursor ABTES. Porous silica is marked by FITC and can act as drug carrier and release the adsorbed drug "on demand" using RF heating.

Focus on modelling adhesion in organic tissue: specific adhesion study of antigen-targeting nanoparticles under fluid flow conditions in human body.

Due to the presence of FeO_x core, nanoparticles are able to act as contrast agents within MRI imaging technology \rightarrow tracking the 3D adhesion of nanoparticles in real time.

MEASUREMENT

FLOW CIRCUIT

FLOW THROUGH CELL

Constructed flow circuit consists of:

- inlet and outlet teflon tubes
- peristaltic pump
- > termostat
- > optical thermometer
- Flow through cell
- > MRI scanner (Bruker Desktop ICON)

FLOW CHARACTERISTICS

> The CFD model of flow in the cell predicts velocities in the range 10-100 μ m/s (flow rate 1.5 ml/min) \rightarrow such velocities are comparable to interstitial flow velocities in tissues (10s μ m/s , Hompland et al., 2014).

SCAFFOLDS (cell growth)

- > 3D printing
- biocompatible material PLA

(Poly-L-lactic acid)

Cultivation of HT-29 colorectal carcinoma cells on PLA scaffold.

> Structured one-piece layer (Fig. A, non-specific adhesion).

Slide-in rack with griddle 3D scaffolds (Fig. B).

MRI scans of flow in the structured layer (loss of the intensity of the signal caused by the flow of escited spins out of measured region.

ADHESION

NON-SPECIFIC ADHESION

BASIC LAYERs : simple 3D void structure and Alginate/FeO_x/SiO₂ microparticles (size \approx 60 μ m)

COMPLEX LAYERs : complex 3D void structure and preparation using Solid Template Method (STM) or 3D printing (Alginate/FeO_x/SiO₂ microparticles)

water suspension

Situation in the cell during the experiment

water

BIO-SPECIFIC ADHESION

Bio-specific covalent bond between CA IX on the surface of cell and IgG-M75 antibody on the surface of nanoparticle.

Contrast enhancement in MRI scan on the scaffold after adhesion of nanoparticles under flow conditions.

Incubation of 3D scaffolds overgrown by HT-29 cancer cells with nanoparticles (200 μ g/ml) modified by IgG-M75 antibody (top row) and by BSA protein (bottom row)

A VEL	after suspension flow				• .		
Ø.		Method	Material of layer	Upflow Fe ³⁺ c (mg/l)	Downflow Fe ³⁺ c (mg/l)	Concentration difference (%)	Slice free area filled with particles (%)
		STM	PDMS >3mm	4.3	2.5	43	5
		3D Print	PLA	4.0	2.4	40	3
		3D Print	ABS	4.0	2.5	37	2
	difference	3D Print	PDMS	4.0	2.7	33	3

> Novel approach for studying 3D adhesion of microparticles was introduced.

> The flow trough cell designated specially to adhesion studies using MRI was designed, manufactured and completed with various 3D differentiated layers , which were also developed and characterized.

> Specific adhesion of nanoparticles modified by specific IgG-M75 antibody on HT-29 cells proved in a stationary medium and was observed also in 3D under flow conditions using MRI technology.

FUTURE

antigen CA IX.

> Continuation of the study of bio-specific adhesion under flow similar to the one in humam body.

ACKNOWLEDGEMENT

> This work has been supported by the Grant Agency of the Czech Republic (project no. 13-37055S) and the Specific University Research (grant. no. 20/2014).

