EFFECT OF SOLVENT SELECTION ON DRUG LOADING AND AMORPHISATION IN MESOPOROUS SILICA PARTICLES

Marek Šoltys¹, Sarah Akhlasová¹, Jakub Mužík¹, Martin Balouch¹, David Zůza¹, Aleš Zadražil¹, Ondřej Kašpar¹, Pavel Kovačík², Josef Beránek², František Štěpánek¹

TEOS + CTAB in H_2O + EtOH mix

- reaction initiated by ammonia

c_{CTAB} and c_{EtOH} affects the shell thick-

600 d.nm, 1040 cm³/g, pores 3 nm

¹ University of Chemistry and Technology in Prague, Department of Chemical Engineering, Technicka 5, 16628 Prague 6, Czech Republic, stepanef@vscht.cz; ² Zentiva, k.s., U Kabelovny 130, 10237 Prague 10

ness and porosity

Why drugs in porous particles?

- Drugs (APIs) loaded inside the pores stay amorphous
- Max pore size is 20x the diameter of API molecule
- Amorphous state provides faster dissolution rates
- Oral formulation option for BCS II and IV APIs
- Mesoporous particles enhance disintegrant efficiency

Silica prepared by an emulsion method from TEOS

There are several methods of loading APIs inside particles

Solvent immersion (adsorption equilibrium)

when API is at least sparingly soluble in low polar solvents or soluble in more polar solvents, lowest crystallinity

the method used in this work

Solvent evaporation / incipient wettnes

when API is at least sparingly soluble in any volatile solvent, higher loadings, risk of crystallization at very high loading

API melt loading

when API degrades above the melting point, solvent free - for insoluble APIs, risk of partial crystallinity

Fast dissolving APIs:		achieved loading (solvent used
Ibuprofen	weak acid	25 (DCM 20), 41
Lacosamide	neutral	43 (DCN
Abacavir sulphate	weak base	39 (H ₂ O 32), 8
Slow dissolving APIs:		
Valsartan	weak acid	35 (DCM 20), 14
API_SA	weak acid	<mark>6</mark> (Isoprop

Determination of loading by corrected TGA

Simultaneous evaporation of H₂O, silanol groups and API

- 1) TGA measurement, 2) Derivation of TG
- **3)** Baseline of API evaporation valley
- **4)** Subtraction of baseline from dTG
- **5)** Reconstruction of TG

The loading depends on:

Ezetimibe neutral A DI CNIA

g [W_{API}/W_{silica}%] [mg/ml])(MeOH 65) V 20) **33** (H₂O 64)

35 (DCM 20), 14 (MeOH 64)		
6 (Isopropanol 5)		
5 (Acetone 20), 10 (Acetone 44)		

API_SN1	neutral	18 (MeOH 64)
API_SN2	neutral	28 (CHCl ₃ 10), 32 (CHCl ₃ 20)
Amlodipine	weak base	52 (DCM 10), 45 (DCM 20)
Aprepitant	weak base	5 (MeOH 10), 11 (MeOH 20), 36 (CHCl ₃ 7.5)
API SB	weak base	27 (CHCl ₃ 12.5)

Dissolution rates are greatly improved

the solution concentration...

...but not on the API partition coefficient.

API loading (%)

No crystals on XRPD

30

Position (2θ)

10

20

Abacavir sulphate (H2O) 80 · Abacavir sulphate (H2O) Aprepitant (CHCl3) 70 · API SB (CHCl3) API_SN2 (CHCl3) ^{60 -} 50 -40 -30 -20 -API SN2 (CHCl3) Amlodipine (DCM) Ibuprofen (DCM) Lacosamide (DCM) Valsartan (DCM) Aprepitant (MeOH Aprepitant (MeOH) 0 Ibuprofen (MeOH) Valsartan (MeOH) API SN1 (MeOH) Ezetimibe (Acetone) 10 · 🛨 Ezetimibe (Acetone) 🗙 API SA (Isopropanol) API logP (-)

Acknowledgement

M.S. would like to thank prof. Pavel Ulbrich for TEM images and Dr. Miloslav Lhotka for N₂ sorption measurements. The financial support from the Specific University Research (MSMT), of the Czech Science Foundation (project No. GACR 19-26127X) and of Zentiva is gratefully acknowledged.

0

Read more about this work in the paper:

Int. J. Pharm. 555, 19-27 (2019)

 $K = (m_{API}/m_{SiO_2})/(m_{API}/m_{solvent})$

www.theparcprague.eu www.vscht.cz www.chobotix.cz